TRIALLEL EXPERIMENTS WITH RECIPROCAL EFFECTS

B. S. ARORA and K. R. AGGARWAL
Punjab Agricultural University, Ludhiana
(Received : November, 1985)

Summary

The theoretical aspect of trialiel analysis has been dealt with by Rawling and Cockerham [7], Hinkelmann [2] and Ponnu Swamy et al. [4]. it was shown by Zelen [9] that a partially balanced design with ($m+1$) associate classes can be derived from a partially balanced design with m associate classes by replacing each treatment by n treatments. In the present study, a four class association scheme has been derived from a partially balanced design with 3-associate classes. The total $(v-1)$, i.e. $[p(p-1)(p-2)-1]$ degrees of freedom (d.f.) has been partitioned into 4 sets of $(p-1, p(p-3) / 2, p(p-1)(p-5) / 6$ and $5 p(p-1)(p-2) / 6$ d.f, said to belong to general combining ability (g.c.a.) effects, first order specific combining ability (s.c.a.) effects, second order s.c.a. offects, and reciprocal effects respectively. There is complete balance over these sets of degrees of freedom, in the sense of Shah [8].
Keywords: Partially Balanced Desiga, General and specific combining ability, reciprocal effect, Orthonormal basis.

Introduction

Each individual cross in a diallel experiment is the product of two parents. On the contrary, a three-way cross or a triallel is a product of three parents, for instance $(A A B B) C C$. Taking p as the number of parents, all possible three way crosses would be $6 p C_{3}$ i.e. $p(p-1)(p-2)$. The theoretical aspect of triallel analysis has been dealt with by Rawling and Cockerham [7], Hinkelmann [2], and Ponnuswamy et. al. [4] taking
3.pCy i.e. $p(p-1)(p-2) / 2$ crosses. The three way cross analysis provides additional information regarding epistatic components of variances and the effects of order in which the parents are involved in crosses. The analysis of triallel experiments taking all the $\dot{p}(p-1)$ ($p-2$) triallel crosses is given.

2. Confounded Triallel Experiments

Let $v=p(p-1)(p-2)$ crosses of a triallel experiment with reciprocal crosses be denoted by ijk. Let $p(p-1)(p-2)$ crosses of this triallel experiment be represented by the $v=p(p-1)(p-2)$ treatments of an incomplete block design with b blocks, $i j k$ th cross representing the $i j k t h$ treatment. Let $y_{i j k l}$, the yield of the $i j k t h$ treatment (cross) allotted to a plot in the lth block be given by

$$
\begin{align*}
& Y_{i j k l}=m+t_{i j k}+\beta_{l}+e_{i j k l}, \quad i \neq j \neq k \tag{1}\\
& (i, j, k=1,2, \ldots, p ; \quad l=1,2, \ldots, b)
\end{align*}
$$

where \boldsymbol{m} is the general mean; $t_{i j k}$ is the three line cross effect; β_{l} is the l th block effect; and $e_{i / k} l^{\prime}$ s are the random errors which are independently and normally distributed with means 0 and variances σ^{2}.

Assume $m, t_{i f k}$'s, β_{l} 's to be fixed unknown parameters with $\underset{i \neq j \neq k}{\sum} \sum_{t_{1 j k}}=0$ and $\sum_{l} \beta_{l}=0$ $i \neq j \neq k$
Let $\quad t_{i j k}=g_{i}+g,+g_{k}+s_{i j}+s_{i k}+s_{j k}+s_{i j k} \quad$ with

$$
\begin{array}{ll}
\Sigma g_{t}=0 ; & \sum_{j \neq i} s_{l j}=0 \tag{2}\\
\text { for all } i ; s_{i j}=s_{j l} ; \\
\sum_{k \neq j \neq i} s_{l j k}=0 & \text { for all } i \text { and } j ; \\
s_{i j k}=s_{i k j}=s_{\jmath l k}=s_{j k l}=s_{k \ell j}=s_{k j l} ; \\
r_{i j k}+r_{i k j}+r_{\jmath k}+r_{i k l}+r_{k i j}+r_{k j l k}=0
\end{array}
$$

Call g_{l} as the general combining ability (g.c.a.) effect of the i th line, $s_{1 s}$ as the first order specific combining ability (s.c.a.) effect of the i th and j th lines, $s_{l j k}$ as the second order s.c.a. effect of the $i t h, j$ th and k th lines and $r_{i j k}$ as the reciprocal effect of the i th, j th and k th lines.

Let $\quad t=\left[t_{183}, t_{182}, t_{184}, t_{142} m, \ldots t_{1 p(p-1)}, t_{1(p-1) p}\right.$,

$$
\begin{align*}
& t_{21 a,}, t_{212}, \ldots, t_{2(p-1) p}, t_{2 p(p-1)}, \ldots, t_{v(p-2)(p-1)} \tag{4}\\
& \left.t_{p(p-1)(v-q)}\right] ; t_{1 j}=\sum_{k} t_{l j k},(k \neq i, j)
\end{align*}
$$

$$
\begin{gathered}
t_{t} \ldots=\Sigma t_{j j},(j \neq i) ; t_{j k k}^{*}=t_{i / k}+t_{(k)} \\
+t_{j i k}+t_{j k}+t_{k i j}+t_{k j t}
\end{gathered}
$$

with the analogous definitions of $t_{1 j}^{*}, t_{1}^{*} . ., Q, Q_{i j .,} Q_{1 .}$ and $Q_{i j k}^{*}$ where $Q_{i \%}$ is the adjusted treatment total for the $i j k$ th treatment (cross) and is defined as

$$
\begin{equation*}
Q_{i / k}=Y_{1, k \cdot}-\left(B^{d 7 k} / k\right) \tag{5}
\end{equation*}
$$

'when $Y_{i / k}$. is the total of the plots to which the $i j k t h$ treatment (cross) was allotted and $B^{i j k}$ is the total of the blocks containing the $i j k t h$ treatment (cross).

Then $g_{i}=t_{t}^{*} . / 6(p-2)(p-3)$;

$$
\begin{align*}
& s_{i j}=\left[t_{i j}^{*}-6(p-3)\left(g_{i}+g_{j}\right)\right] / 6(p-4) \tag{6}\\
& s_{i j k}=\left(t_{j j k}^{*} / 6\right)-g_{i}-g_{j}-g_{k}-s_{i j}-s_{i k}-s_{j k} \\
& r_{i j k}=t_{i j k}-t_{i j k}^{*} / 6
\end{align*}
$$

It was shown by Zelen [9] that a partially balanced design with ($m+1$) associate classes can be derived from a partially balanced design with \dot{m}-associate classes by replacing each treatment by a set of treatments.

Use this result and introduce an useful four class association scheme for $v=p(p-1)(p-2)$ treatments represented by $i j k(i \neq j \neq k)$; $i, j, k=1,2, \ldots, p$.

By multiplying each treatment $i j k$ of the extended triangular $E T(p)$ design of John [3], an useful 4-class Partially Balanced Incomplete Block ($P B I B$) design is obtained for the $p(p-1(p-2)$ treatments to becalled a modified extended triangular $[\operatorname{MET}(p)]$ design with the following association scheme.

Definition 2.1. Let each treatment $i j k$ of the Extended Triangular ($E T$) association scheme of John [3] be mapped on [ijk, ikj, jik, jki, $k i j$ and $k j i]$. For a treatment $i j k$, the treatments $i k j, j i k, j k_{i}, k i j, k j i$ are first associates; and images of i th associates of the $E T$ association scheme are $(i+1)+$ th associates $(i=1 ; 2,3)$.

We define
Definition 2.2. A PBIB design with $v=p(p-1)(p-2)$ treatments.
having the association scheme given in Definition 2.1 will be called a modified extended triangular ($M E T$) design.

Let N be the incidence matrix of a connected $\operatorname{MET}(p)$ design. Then the eigen values θ_{i} of $N N^{\prime}$ with their multiplicities α_{i} (see P.W.M. John, [3]) will be

$$
\begin{align*}
& \theta_{0}= r k, \alpha_{0}=1 ; \\
& \theta_{1}= r-\lambda_{1}, \alpha_{1}=5 p(p-1)(p-2) / 6 ; \\
& \theta_{8}= r+5 \lambda_{1}+6\left[(2 p-9) \lambda_{2}+\lambda_{2}(p-4)(p-9) / 2\right. \\
&\left.\quad-\lambda_{4}(p-4)(p-5) / 2\right] \\
& \alpha_{2}=(p-1) \tag{7}\\
& \theta_{3}= r+5 \lambda_{1}+6\left[(p-7) \lambda_{2}-2(2 p-11) \lambda_{3}+(p-5) \lambda_{4}\right] \\
& \alpha_{3}=p(p-3) / 2 ; \\
& \theta_{4}= r+5 \lambda_{1}+6\left(-3 \lambda_{2}+3 \lambda_{2}-\lambda_{4}\right) \\
& \alpha_{4}= p(p-1)(p-5) / 6
\end{align*}
$$

The eigen values ϕ_{t} of the C-matrix of the given $\operatorname{MET}(p)$ design with multiplicities α_{l} will be

$$
\begin{equation*}
\phi_{1}=r-\theta_{l} / k, \quad i=0,1,2,3,4 \tag{8}
\end{equation*}
$$

Lei

$$
\begin{align*}
& t_{i \cdot}^{*}=\underline{l_{i}^{\prime} t} \\
& t_{i j}^{*}=l_{i j \underline{t}}^{\prime}, \quad(i \varangle j) \tag{9}\\
& t_{i j k}^{*}=\underline{l}_{l_{k k}}^{\prime} \underline{t}, \quad(i<j<k) \\
& t_{\| k}=\underline{x}_{1 j k}^{\prime} \underline{t}, \quad i \neq j \neq k
\end{align*}
$$

From (6), it can be seen that $t^{\prime} x_{i}(i=2,3, \ldots, p)$ represent g.c.a. contrasts; $t^{\prime} y_{t}(i=1,2, \ldots, p \overline{(p-3) / 2)}$ represent the first order s.c.a. contrasts ; $t^{\prime} z_{j}(i=1,2, \ldots, p(p-1)(p-5) / 6)$ represent the second order s.c.a. contrasts and $t^{\prime} u_{i}(i=1,2, \ldots, 5 p(p-1)$ ($p-2$)/6) represent the reciprocal contrasts.

Let S_{1}, S_{2}, S_{3} and S_{6} be the vector spaces spanned by l_{i} 's, l_{1} 's $l_{i 19}$'s and mijk's, reprpectively. Then it cạn be easily seen that S_{1} is a sub-spaee
of S_{1}, S_{2} is a sub-space of S_{3} and S_{2} is á sub-space of S_{4}. Let $E_{m, n}$ bo $m \times n$ matrix with all its elements unity. Then

$$
\begin{equation*}
\left[(1 / \overline{\sqrt{v}} v) E_{0,1}, \underline{x}_{2}, \underline{x}_{2}, \underline{x}_{4}, \ldots, x_{-}\right] \tag{10}
\end{equation*}
$$

is an orthonormal basis for the vector space S_{1} where \underline{x}_{1} 's are given by

$$
\begin{align*}
& x_{i}^{\prime} t=\left[\begin{array}{l}
i-1 \\
\bar{\Sigma}^{2} \\
(p-3]^{\frac{1}{2}}
\end{array}\right. \\
& \left.t^{*} \cdots-(i-1) i_{i}^{*} . .\right]+[3 i(i-1)(p-2) \tag{11}
\end{align*}
$$

$$
i=1,2,3, \ldots, p
$$

Let us, now extend the orthonormal basis given in (10) of S_{1} to an orthonormal basis

$$
\begin{equation*}
\left[(1 / \sqrt{v}) E v, 1, \underline{x}_{2}, \underline{x}_{2}, \ldots, \underline{x}_{p}, \underline{y}_{1}, \underline{y}_{2}, \ldots, \underline{y}_{p(p-2) / 2}\right] \tag{12}
\end{equation*}
$$

for $S_{\mathbf{g}}$ [cf. Raghavarao (6)]. Let us, further, extend the basis given in (12) to another orthonormal basis.

$$
\begin{aligned}
& {\left[(1 / \sqrt{ } v) E v, 1, \underline{x}_{2}, \ldots, \underline{x}_{p}, y_{1}, \underline{y}_{2}, \ldots, \underline{y}_{p(p-p) / 2}\right.} \\
& \underline{z}_{1}, z_{2}, \ldots, \underline{z}_{p(p-1)(p-5) /(6]}
\end{aligned}
$$

for $S_{\mathbf{2}}$.
Let us further, complete the basis given in (13) to another orthonormal basis

$$
\begin{aligned}
& {\left[(1 / \sqrt{v}) E v, 1, x_{2}, \underline{x}_{2}, \ldots, \underline{x}_{p}, \underline{y}_{1}, \underline{y}_{2}, \ldots, \underline{y}_{p(p-8) / 2}\right.} \\
& \underline{z}_{1}, z_{1}, \ldots, \underline{z}_{p}(p-1)(p-5) / 8, \underline{x}_{128}(1), \underline{x}_{18 s(2)}, \ldots \text {, }
\end{aligned}
$$

for S_{d} Let

$$
\begin{align*}
& \left.\underline{t}^{\prime} \underline{x}_{i v_{k}(1)}=\left(t_{1 / k}-t_{t(k)}\right)+1.2\right)^{\frac{1}{2}} ; \\
& \underline{t}^{\cdot} x_{i / k(\mathrm{l})}=\left(t_{i j k}+t_{(k)}-2 t_{j(k)}\right)+(2.3)^{\frac{1}{2}} ; \\
& \underline{t}^{\prime} \underline{x}_{i k(3)}=\left(t_{1 / k}+t_{k j}+t_{t_{k}}-3 t_{j_{k i}}\right)+(3.4)^{\frac{1}{2}} ; \tag{15}\\
& \underline{t}^{\prime} \underline{x}_{i, k(4)}=\left(\dot{t}_{i / k}+t_{i k j}+t_{j k}+t_{j k_{i}}-4 t_{k i j}\right)+(4.5)^{\frac{1}{2}} ;
\end{align*}
$$

We define

$$
\begin{align*}
& A_{2}^{*}=\sum_{i=2}^{p} x_{i} x_{i}^{\prime}: \\
& A_{\varepsilon}^{*}=\sum_{s=1}^{p(p-3) l^{2}} \underline{y}_{i} \underline{y}_{i}^{\prime} ; \tag{16}\\
& A_{a}^{*}=\underset{i=1}{p(p-1)(p-5) / 6} z_{i}^{\prime} z_{i}: \\
& A_{1}^{*}=\sum_{i<j<k}^{\sum} \sum_{l=1}^{5} x_{i j l}(l) x_{i j k}^{\prime}(l):
\end{align*}
$$

to get the analysis of the given $\operatorname{MET}(p)$ design.
A solution of the reduced normal equations

$$
\begin{equation*}
\hat{C t}=\underline{q} \tag{17}
\end{equation*}
$$

will be

$$
\begin{equation*}
\hat{t}=\left[\sum_{i=1}^{4}\left(1 / \phi_{i}\right) A_{i}^{*}\right] \underline{Q} \tag{18}
\end{equation*}
$$

Following Raghavarao (1962), we get

$$
\begin{align*}
\hat{t} & =\left(1 / \phi_{i}\right) A_{1}^{\hbar}+\left(1 / \phi_{2}\right) A_{2}^{*}+\left(1 / \phi_{8}\right) A_{3}^{*}+\left(1 / \phi_{1}\right) \\
& \left(I v-A_{1}^{\hbar}-A_{2}^{\hbar}-A_{3}^{*}\right) . \tag{19}
\end{align*}
$$

Now, $A_{3}^{\text {t }}$ can be worked out as given below :

$$
\begin{align*}
A_{3}^{*} & =D\left[(1 / 6(p-4)) I_{v}^{*}-((p-2) / 12(p-3)(p-4)) A_{1}\right. \\
& -\left((p-1) / 9 v^{*}(p-2)(p-4) E v, v\right] D^{\prime} \tag{20}\\
& -(1 / v) E v, v-A_{2}^{*}
\end{align*}
$$

where A_{1} is an idempotent matrix defined by Aggarwal (1974) anc D^{\prime} is the incidence matrix of the triangular design with parameters

$$
\begin{array}{ll}
v^{*}=p(p-1) / 2, & b^{*}=p(p-1)(p-2) \\
r^{*}=6(p-2), & k^{*}=3 ; \lambda_{1}^{*}=6, \lambda_{2}^{*}=0 . \tag{21}
\end{array}
$$

Therefore, the solution of the normal equations given in (18) is given by

$$
\begin{align*}
A_{i j k}= & {\left[\left(Q_{1}^{*} \ldots+Q_{j}^{*} \ldots+Q_{k}^{*} \ldots\right) / 6(p-2)(p-3) \phi_{1}\right.} \\
& +\left(Q_{j}^{*} .+Q_{i k}^{*} \cdot+Q_{j k}^{*}-2\left(\left(Q_{1}^{*} \ldots+Q_{3}^{*} \ldots+Q_{k}^{*} \ldots\right) /\right.\right. \\
& (p-2)) / 6(p-4) \phi_{2}+\left(Q_{i j k}+\left(Q_{l}^{*} \ldots+Q_{j}^{*} \ldots+Q_{k}^{*} \ldots\right) /\right. \\
& (p-3)(p-4)-\left(Q_{i j}^{*}+Q_{i k}^{*}+Q_{j k}^{*}\right) /(p-4) \\
& \left.\left.+Q_{i k k}^{*}\right) / 6 \phi_{k}+\left(5 Q_{d k}-Q_{j j k}^{*}\right) / 6 \phi_{4}\right] \tag{22}
\end{align*}
$$

for $i, j, k=1,2, \ldots, p$.
The sum of squares (S.S.) for g.c.a., first order s.e.a., second order s.c.a. and reciprocal effects, will be $\left(1 / \phi_{2}\right) \underline{Q}^{\prime} \mathcal{A}_{2}^{*} \underline{Q}\left(1 / \phi_{3}\right) \underline{Q}^{\prime} A_{3}^{*} \underline{Q}$, $\left(1 / \phi_{4}\right) \underline{Q}^{\prime} A_{3}^{*} \underline{Q},\left(1 / \phi_{4}\right) \underline{\underline{Q}} \quad\left[I_{v}-A_{1}^{*}-A^{\prime 2}-A_{3}^{*}\right) \underline{Q}$ and $\left(1 / \phi_{1}\right) \underline{Q}^{\prime} A^{*} \underline{Q}$, respectively.

Now we shall work out

$$
\begin{align*}
& \left.\underline{Q}^{\prime} \mathcal{A}_{2}^{*} \underline{Q}=\underline{Q}^{\prime} \Sigma x_{\underline{i}} x_{\underline{i}}\right) \underline{Q} \tag{23}\\
& =\sum_{i=2}^{p}\left[\sum_{j=1}^{i-1} \underline{Q}_{j} \ldots-(i-1) \underline{Q}_{i}^{*} \ldots\right]^{2} /[3 i(i-1)(p-2)(p-3)] \\
& =[1 / 12(p-2)(p-3)]\left[\left(Q_{2}^{*} . .-Q_{2 .}^{*} .\right)^{2} / 2.1\right. \\
& +\left(Q_{1}^{*} \ldots+Q_{2}^{*} \ldots-2 Q_{3}^{*} \ldots\right)^{2} / 3.2 \\
& +\left(Q_{1}^{\#} .++Q_{2}^{*} .-+Q_{3^{\prime}}^{*} \ldots-3 Q_{4}^{*} .\right)^{9} / 4.3+\ldots+ \\
& \left.\left(Q_{1}^{*} \ldots+Q_{2}^{*} \ldots+\ldots+\ldots \sim(p-1) Q_{p}^{*} \ldots\right)^{2} / p(p-1)\right] \\
& =[1 / 12(p-2)(p-3)]\left[\sum_{i=1}^{p} Q_{i . l}^{* .2}(p-1) / p+(1 / p) \sum_{i=1}^{p} Q_{i .1}^{* 2}\right] \\
& =[1 / 12(p-2)(p-3)]\left[\sum_{i=1}^{p} Q_{i}^{* s} \cdot\right]
\end{align*}
$$

$$
\begin{equation*}
=\sum_{i=1}^{p} Q_{i}^{* 2} . . / 12(p-2)(p-3) \tag{24}
\end{equation*}
$$

The above result can be put in the form of theorem given below :
Thborbm. The sum of squares (S.S.) for g.c.a. effects are given by

$$
\begin{equation*}
\underline{Q}^{\prime} A_{i}^{*} \underline{Q}=\sum_{i=1}^{p} Q_{i}^{* 2} . . / 12(p-2)(p-3) \tag{25}
\end{equation*}
$$

Similarly S.S. for first order s.c-a., second order s. c. a. and reciprocal effects can be worked out. The various S.S.'s are given in Table 1.

Illustration Let us conssruct the series of Modified Extended Triangular $M E T(p)$ design with the parameters

$$
\begin{align*}
& v=p(p-1)(p-2), b=p(p-1) / 2, \quad r=3 \\
& k=6(p-2), \lambda_{1}=3, \lambda_{2}=1, \lambda_{2}=0, \quad \lambda_{i}=0 . \tag{26}
\end{align*}
$$

when $p=6$, we have

$$
\begin{align*}
& v=120, \quad b=15, \quad r=3 \\
& k=24, \lambda_{1}=3, \lambda_{2}=1, \lambda_{2}=0, \lambda_{6}=0 \tag{27}
\end{align*}
$$

First arrange $v=p(p-1)(p-2) / 6=20$ (for $p=6$) treatments in 6 square arrays $A_{1}, A_{2}, \ldots, A_{6}$ each of order 5 as the following:

	\times	123	124	125	126
	123	\times	134	135	136
A_{1}	124	134	\times	145	146
	125	135	145	\times	156
	126	136	146	156	\times
	\times	123	124	125	126
	123	\times	234	235	236
A_{2}	. 124	234	\times	245	246
	125	235	245	\times	256
	126	236	246	256	\times
	\times	123	134	135	136
	123	\times	234	235	236
A_{3}	134	234	\times	345	346
	135	235	345	\times	356
	136	236	356	356	\times

TABLE 1-ANOVA TABLE

	\times	124	134	145	146
	124	\times	234	245	246
$A_{4}=$	134	234	\times	345	346
,	145	245	-345	\times	456
	146	246	346	456	\times
	\times	125	135	145	156
	125	\times	235	245	256
$A_{5}=$	135	235	X	345	356
	145	245	345	\times	-456
	156	256	356	456	x
	\times	126	136	146	156
	126	\times	236	246	256
$A_{6}=$	136	236	\times	346	356
	146	246	346	\times	456
	156	256	356	456	\times

By mapping each treatment $i j k$ of the extended tringular design (28), we obtain the MET(6) design with the parameters as given in (27).
The $Q_{i f k}^{* j}$'s and the $Q_{i j h}$'s the adjusted treatment totals for MET(6) are given in Table 2 and Table 3 respectively. The various sum of squares (S.S.) due to the different effects have been computed with the help of the formulae shown in Table 1 and are given in ANOVA Table 4.

TABLE 2-Qijk-ADJUSTED TREATMENT TOTALS

Triallel Cross combinations	Adjusted treatment total	Triallel cross combinations	Adjusted treatment totals
Q ${ }^{\text {\% }}$	-93.00	Q_{234}^{*}	-20.75
$Q_{124}^{\text {\% }}$	-92.25	- Q_{23}^{*}	-27.75
Q_{125}^{*}	- 57.75	Q_{23}^{*}	-9.25,
$Q_{* 126}^{\text {¢ }}$	- 57.00	$Q_{245}^{\text {a }}$	050
Q_{134}	- 57.00	$Q^{\text {\% }}$	38.75
Q_{135}	- -40.00	$Q^{\text {E }}$,	61.00
Q_{136}^{*}	- 30.25	Q_{345}^{*}	56.50
Q ${ }_{14}^{*}$	- -14.00	Q_{346}^{*}	54.75
Q_{146}^{*}	15.50	$Q^{*}{ }_{356}$	90.50
Q_{15}^{*}	47.25	Q456	134.25

TABLE 4-ANOVA TABLE

'Source	$d f .$	Some of. squorss	Mean Squares
Blocks ignoring treatments	14	11527.05	823.36
g. c. a. effects eliminating blocks	5	956.39	191.28
First order s.c.a. effocts eliminating blocks	9	17444.64	1938.29
Second order s.c.a. effects eliminating blocks	5	122:6.59	2443.32
Reciprocal effects Error	$\begin{array}{r} 100 \\ 226 \end{array}$	$\begin{array}{r} 6333.41 \\ 21444.18 \end{array}$	$\begin{aligned} & 63.33 \\ & 94.89 \end{aligned}$
Total	3.59	69922.26	

The estimates of the various genetic effects. variances of these estimates and variances of the elementary contrasts of these estimates, are.

$$
\begin{aligned}
& \hat{g}_{1} \\
& =Q_{i}^{*} . / 6(p-2)(p-3) \phi_{1} ; \\
& \hat{s}_{\| 1} \quad=\left[Q_{i ;}^{*}-6(p-3)\left(\hat{g}_{r}+\hat{g}_{j}\right)\right] / 6(p-4) \phi_{9} ; \\
& \hat{s}_{i / k} \quad=\left[1 / 6 Q_{i j k}^{*}-\left(\hat{g_{i}}+\hat{g_{j}}+\hat{g_{k}}\right)\right. \\
& \left.\therefore-\left(\hat{s_{i j}}+\hat{s_{l k}}+\hat{s_{j k}}\right)\right] / \phi_{k} \\
& \left.\hat{r_{j k}} \quad=Q_{\langle j k}-Q_{i j k}^{*} / 6\right] / \phi_{a} ; \\
& \boldsymbol{V}\left(\hat{g}_{1}\right) \quad=\left[\begin{array}{l}
\left.(p-1) \sigma^{2}\right] /\left[3 p(p-2)(p-3) \phi_{1}\right] ; ; ~
\end{array}\right. \\
& V\left(\hat{g_{1}}-\hat{g_{i}}\right)=2 \sigma^{2} /\left[3(p-2)(p-3) \phi_{1}\right], i \neq 1 \\
& V\left(\hat{s}_{4}-\hat{s}_{k}\right)=(p-3) \sigma^{2} /\left[3(p-2)(p-4) \varphi_{2}\right], i \neq j, k ; j \neq k \\
& \boldsymbol{V}\left(\hat{s}_{t}-\hat{s}_{k i}\right)=\sigma^{2} /\left[3(p-2) \varphi_{2}\right], i \neq j, k, l ; j \neq k, l ; k \neq l ; \\
& V\left(\hat{s}_{i / k}-\hat{s}_{(\jmath l}\right)=(p-5) a^{2} /\left[3(p-3) \phi_{2}\right], i \neq j, k, l ; j \neq k, l ; k \neq l ;
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{V}\left(\hat{s}_{1 / k}-\hat{s I_{m}}\right)=(p-5)\left(p^{2}-6 p+3\right) \sigma^{2} /\left[3(p-3)(p-4)^{\mathbf{s}} \phi_{3}\right], \\
& i \neq j, k, l, m ; j \neq k, l, m ; k \neq l, m ; l \neq m ; \\
& V\left(\hat{s}_{i, k}-\hat{s}_{m n}\right)=\left(p^{2}-10 p+27\right) \sigma^{2} /\left[3(p-3)(p-4) \phi_{3}\right], \\
& i \neq j, k, l, m, n ; j \neq k, l, m, n ; k \neq l, m, n ; \\
& l \neq m, n ; m \neq n \\
& \mathcal{F}^{\prime}(\hat{r} / / \mathrm{m}) \quad=(5 / 6) \sigma^{2} / \phi_{4}, i \neq j, k ; j \neq k ; \\
& V\left(\hat{r}_{i j l}-\hat{r}_{i l l}\right)=(5 / 3) \sigma^{2} / \phi_{1}, i \neq j, k ; j \neq k ; \\
& \hat{V}\left(\hat{r}_{1 \mathrm{i}}-\hat{r}_{l_{m}}\right)=(5 / 3) \sigma^{\mathbf{1}} / \phi_{4}, i \neq j, k ; j \neq k .
\end{aligned}
$$

REFERENCES

[1] Agearwal, K. R. (1974) : Analysis of $L_{2}(s)$ and triangular designs, J. Ind. Soc. Agr. Slatist, 26 : 3-13.
[2] Hinkelmann, K. (1965) : Partial triallel crosses, Sankhya, A 27: 173-195.
[3] John, P. W. M. (1966) : An extension of the triangular association scheme to three associate ciasses, J. Roy, Statist. Soc.., B 28 : 361-365.
[4] Ponnuswamy, K. M. Das, M. N. and Handoo, M. I. (1974): Combining ability type of analysis for triallel crosses in maize (Zea mays), Theoretical and Applied Geneties, 45 : 170-175.
[5] Raghavarao, D. (1962): On the use of latent vectors in the analysis of group divisiblo and $L_{2}(s)$ designs, J. Ind. Soc. Agr. Statist., : 138-144.
[6] Raghavarao, D. (1972) : Matrix Theory. Oxford and IBH Publishing Co., Bombay.
[7] Rawlings, J. O. and Cockerham, C. C. (1962) : Analysis of double cross hybrid populations, Biometrica, 18 : 229-244.
[8] Shah, B. V. (1958): On balancing in factorial experiments, Ann. Math. Statist., 29 : 766-771.
[9] Zelen, M. (1954) : A note on partially balanced designa, Ann. Math. Statist;, 25 : 599-602.

